Answer
$\sin\theta=\frac{12}{13}$
$\cos\theta=\frac{5}{13}$
$\tan\theta=\frac{12}{5}$
Work Step by Step
$\sin\theta=\frac{y}{r}$
$\sin\theta=\frac{12}{13}$
Substitute into $x^2+y^2=r$
$x=\pm5$
So x=5 because $\theta$ terminates in the first quadrant and can only be positive.
Knowing x, we can now substitute it into the rest of the trigonometric functions.
$\cos\theta=\frac{5}{13}$
$\tan\theta=\frac{12}{5}$