Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 1 - Section 1.3 - Definition I: Trigonometric Functions - 1.3 Problem Set - Page 33: 59

Answer

$\sin{\theta}= -\dfrac{1}{2}$ $\cos{\theta} =\dfrac{\sqrt{3}}{2}$ $\tan{\theta} =-\dfrac{\sqrt{3}}{3}$ $\csc{\theta} =-2$ $\sec{\theta} = \dfrac{2\sqrt{3}}{3}$ $\cot{\theta} = -\sqrt{3}$

Work Step by Step

$\because \cos{\theta} = \dfrac{x}{r} = \dfrac{\sqrt{3}}{2}$ $\therefore x = \sqrt{3} \hspace{10pt} \& \hspace{10pt} r = 2$ $$r^2 = x^2+y^2 \\ y^2 = r^2-y^2 \\ y = \pm \sqrt{r^2-y^2} =\pm \sqrt{2^2-(\sqrt{3})^2} = \pm 1$$ As $\theta$ terminates in $QIV$, any point on its terminal side will have a negative $y$ coordinate. $\therefore y = -1$ $\sin{\theta} = \dfrac{y}{r} = -\dfrac{1}{2}$ $\tan{\theta} = \dfrac{y}{x} = -\dfrac{\sqrt{3}}{3}$ $\csc{\theta} = \dfrac{1}{\sin{\theta}} = -2$ $\sec{\theta} = \dfrac{1}{\cos{\theta}} = \dfrac{2\sqrt{3}}{3}$ $\cot{\theta} = \dfrac{1}{\tan{\theta}} = -\sqrt{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.