Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 1 - Section 1.3 - Definition I: Trigonometric Functions - 1.3 Problem Set - Page 33: 74

Answer

$\sin{(45^\circ)} =-\sin{(-45^\circ)}= \dfrac{\sqrt{2}}{2}$

Work Step by Step

The coordinates of points on the terminal side of $45^{\circ}$ $(x_1,y_1)$ can be given by $(a,a)$, where $a$ is a positive number. Choosing $a=1$ arbitrarily, the point is $(1,1)$. $r_1 = \sqrt{(x_1)^2+(y_1)^2} = \sqrt{1^2+1^2} = \sqrt{2}$ $\sin{45^\circ} = \dfrac{y_1}{r_1} = \dfrac{1}{\sqrt{2}} = \dfrac{\sqrt{2}}{2}$ The coordinates of points on the terminal side of $-45^{\circ}$ $(x_1,-y_1)$ can be given by $(a,-a)$, where $a$ is a positive number. Choosing $a=1$ arbitrarily, the point is $(1,-1)$. $r_2 = \sqrt{(x_2)^2+(y_2)^2} = \sqrt{(1)^2+(-1)^2} = \sqrt{2}$ $\sin{(-45^\circ)} = \dfrac{-y_1}{r_2} = -\dfrac{1}{\sqrt{2}} = -\dfrac{\sqrt{2}}{2}$ $\therefore \sin{(45^\circ)} =-\sin{(-45^\circ)}= \dfrac{\sqrt{2}}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.