Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 2 - Section 2.3 - Solving Right Triangles - 2.3 Problem Set - Page 81: 53

Answer

Chapter 2 - Section 2.3 Problem Set: 53 (Answer) Refer to Figure 1 $x = 17$ (To 2 significant digits)

Work Step by Step

Chapter 2 - Section 2.3 Problem Set: 53 (Solution) Refer to Figure 1 In $\triangle$BAC, $\tan A$ = $\frac{h}{(x+y)}$ $\tan 43^{\circ}$ = $\frac{h}{(x+11)}$ $h = (x+11) \cdot \tan 43^{\circ}$ $\longrightarrow (1)$ In $\triangle$BDC, $\tan \angle BDC$ = $\frac{h}{x}$ $\tan 57^{\circ}$ = $\frac{h}{x}$ $h = x \cdot \tan 57^{\circ}$ $\longrightarrow (2)$ Equating $(1) to (2)$ $(x+11) \cdot \tan 43^{\circ}$ = $x \cdot \tan 57^{\circ}$ $x = \frac{11\tan 43^{\circ}}{\tan 57^{\circ} - \tan 43^{\circ}}$ $x = 17$ (To 2 significant digits)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.