Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Prerequisites - Review Exercises - Page 64: 102

Answer

$\dfrac{4x}{2x-3}$

Work Step by Step

We are given the complex fraction: $\dfrac{\dfrac{1}{2x-3}-\dfrac{1}{2x+3}}{\dfrac{1}{2x}-\dfrac{1}{2x+3}}$ Multiply both the numerator and denominator by $2x(2x-3)(2x+3)$ and simplify: $\dfrac{2x(2x-3)(2x+3)\dfrac{1}{2x-3}-2x(2x-3)(2x+3)\dfrac{1}{2x+3}}{2x(2x-3)(2x+3)\dfrac{1}{2x}-2x(2x-3)(2x+3)\dfrac{1}{2x+3}}$ $=\dfrac{2x(2x+3)-2x(2x-3)}{(2x-3)(2x+3)-2x(2x-3)}$ $=\dfrac{2x(2x+3-2x+3)}{4x^2-9-4x^2+6x}$ $=\dfrac{2x(6)}{6x-9}$ $=\dfrac{12x}{3(2x-3)}$ $=\dfrac{4x}{2x-3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.