College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter R - Section R.7 - Rational Expressions - R.7 Assess Your Understanding - Page 72: 79

Answer

$\displaystyle \frac{2(5x-1)}{(x-2)(x+1)^{2}}$

Work Step by Step

$\displaystyle \frac{\frac{x+4}{x-2}-\frac{x-3}{x+1}}{x+1}=(\frac{x+4}{x-2}-\frac{x-3}{x+1})\div(x+1)$ $=(\displaystyle \frac{x+4}{x-2}\cdot\frac{x+1}{x+1}-\frac{x-3}{x+1}\cdot\frac{x-2}{x-2})\div(x+1)$ $=(\displaystyle \frac{x^{2}+5x+4}{(x-2)(x+1)}-\frac{x^{2}-5x+6}{(x-2)(x+1)})\div(x+1)$ $=(\displaystyle \frac{10x-2}{(x-2)(x+1)})\div(x+1)$ ... division = multiplication with the reciprocal, $=\displaystyle \frac{2(5x-1)}{(x-2)(x+1)}\cdot\frac{1}{(x+1)}$ $=\displaystyle \frac{2(5x-1)}{(x-2)(x+1)^{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.