College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter P, Prerequisites - Section P.3 - Integer Exponents and Scientific Notation - P.3 Exercises - Page 23: 31

Answer

a) $\frac{xy^{3}}{3}$ b) $\frac{y^{6}}{4x^{6}}$ c) $\frac{x^{4}y^{5}}{9}$

Work Step by Step

a) We simplify as follows: $\frac{3x^{-2}y^{5}}{9x^{-3}y^{2}}$ $=\frac{x^{-2}y^{5}}{3x^{-3}y^{2}}$ Divide the numerator and denominator by 3. $=\frac{xy^{3}}{3}$ Using exponential laws, simplify $\frac{x^{-2}}{x^{-3}}$ to $x$ and $\frac{y^{5}}{y^{2}}$ to $y^{3}$. b) We simplify as follows: $(\frac{2x^{3}y^{-1}}{y^{2}})^{-2}$ $=(2x^{3}y^{-3})^{-2}$ Use exponent laws to simplify $\frac{y^{-1}}{y^{2}}$ to $y^{-3}$. $=(\frac{1}{2x^{3}y^{-3}})^{2}$ To remove the negative exponent, divide 1 by it to create a reciprocal. $=(\frac{y^{3}}{2x^{3}})^{2}$ Move $y^{-3}$ to the numerator to get rid of the negative exponent. $=\frac{y^{6}}{4x^{6}}$ Square everything. c) We simplify as follows: $(\frac{y^{-1}}{x^{-2}})^{-1}(\frac{3x^{-3}}{y^{2}})^{-2}$ $=(\frac{x^{-2}}{y^{-1}})(\frac{y^{4}}{9x^{-6}})$ Expand the exponents into the fractions using exponent laws. $=(\frac{y}{x^{2}})(\frac{y^{4}}{9x^{-6}})$ Remove the negative exponents by creating a reciprocal of the original fraction. $=\frac{y\times y^{4}}{x^{2}\times 9x^{-6}}$ Multiply the fractions together. $=\frac{y^{5}}{9x^{-4}}$ Use exponent laws to simplify. $=\frac{x^{4}y^{5}}{9}$ Remove the negative exponent on $x^{-4}$ by bringing it to the numerator.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.