Answer
$(1+10y)(1-10y+100y^2)$
Work Step by Step
RECALL:
$A^3+B^3=(A+B)(A^2-AB+B^2)$
The given binomial can be written as:
$=1^3+10^3y^3
\\=1^3+(10y)^3$
The binomial above is a sum of two cubes.
Factor using the the formula above with $A=1$ and $B=10y$ to obtain:
$=(1+10y)[1^2-(1)(10y) +(10y)^2]
\\=(1+10y)(1-10y+100y^2)$