Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.10 Numerical Solution to First-Order Differential Equations - Problems - Page 101: 3

Answer

The solution is $y_{10}=1.044$

Work Step by Step

We have $$y'=x-y^2$$ Setting $h=0.05$ in equation $y'=x-y^2$ $$y_{n+1}=y_n+0.05(x_n-y_n^2)$$ Hence, $y_1=y_0+0.05(x_0-y_0^2)=2+0.05(0-2^2)=1.8$ $y_2=y_1+0.05(x_1-y_1^2)=1.8+0.05(0.05-1.8^2)=1.6405$ $y_3=y_2+0.05(x_2-y_2^2)=1.6405+0.05(0.1-1.6405^2)=1.51$ $y_4=y_3+0.05(x_3-y_3^2)=1.51+0.05(0.15-1.51^2)=1.403$ $y_5=y_4+0.05(x_4-y_4^2)=1.403+0.05(0.2-1.403^2)=1.314$ $y_6=y_5+0.05(x_5-y_5^2)=1.314+0.05(0.25-1.314^2)=1.24$ $y_7=y_6+0.05(x_6-y_6^2)=1.24+0.05(0.3-1.24^2)=1.178$ $y_8=y_7+0.05(x_7-y_7^2)=1.178+0.05(0.35-1.178^2)=1.126$ $y_9=y_8+0.05(x_8-y_8^2)=1.126+0.05(0.4-1.126^2)=1.08$ $y_{10}=y_9+0.05(x_9-y_9^2)=1.08+0.05(0.45-1.08^2)=1.044$ If we increase the step size to $h = 0.05$, the corresponding approximation to $y(0.5)$ becomes $y_{10}=1.044$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.