Answer
$y(1)=0.5012$
Work Step by Step
We have
$$y'=-\frac{2xy}{1+x^2}$$
Setting $h=0.1$ in equation $y'=-\frac{2xy}{1+x^2}$
$$y_{n+1}=y_n+0.05(-\frac{2x_ny_n}{1+x_n^2}-\frac{2x_{n+1}y^*{n+1}}{1+x_{n+1}^2})$$
Hence,
$y_1=0.99$
$y_2=0.9616$
$y_3=0.9177$
$y_4=0.8625$
$y_5=0.8007$
$y_6=0.7163$
$y_7=0.6721$
$y_8=0.6108$
$y_9=0.5536$
$y_{10}=0.5012$
If we increase the step size to $h = 0.1$, the corresponding approximation to $y(1)$ becomes $y_{10}=0.5012$