Answer
The solution is $y_{5}=0.776$
Work Step by Step
We have
$$y'=-x^2y$$
Setting $h=0.2$ in equation $y'=-x^2y$
$$y_{n+1}=y_n+0.2(-x_n^2y_n)$$
Hence,
$y_1=y_0+0.2(-x_0^2y_0)=1+0.2(-0^2\times1)=1$
$y_2=y_1+0.2-x_1^2y_1)=1+0.2(-0.2^2\times1)=0.992$
$y_3=y_2+0.2(x_2^2y_2)=0.992+0.2(-0.4^2\times0.992)=0.96$
$y_4=y_3+0.2(-x_3^2y_3)=0.96+0.2(-0.6^2\times0.96)=0.89$
$y_5=y_4+0.2(-x_4^2y_4)=0.89+0.2(-0.8^2\times0.89)=0.776$
If we increase the step size to $h = 0.2$, the corresponding approximation to $y(1)$ becomes $y_{5}=0.776$