Answer
$y(0.5)=1.0895$
Work Step by Step
We have
$$y'=x-y^2$$
Setting $h=0.05$ in equation $y'=x-y^2$
$$y_{n+1}=y_n+0.025(x_n-y_n^2+x_{n+1}-y^2_{n+1})$$
Hence,
$y_1=1.8209$
$y_2=1.6725$
$y_3=1.5497$
$y_4=1.4468$
$y_5=1.36$
$y_6=1.2866$
$y_7=1.2243$
$y_8=1.1715$
$y_9=1.1269$
$y_{10}=1.0895$
If we increase the step size to $h = 0.05$, the corresponding approximation to $y(0.5)$ becomes $y_{10}=1.0895$