Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.10 Numerical Solution to First-Order Differential Equations - Problems - Page 101: 6

Answer

$y(0.5)=5.7285$

Work Step by Step

We have $$y'=4y-1$$ Setting $h=0.05$ in equation $y'=4y-1$ $$y_{n+1}=y_n+0.025(4y_n-1+4y_{n+1}^*-1)$$ Hence, $y_1=y_0+0.025(4y_0-1+4y_{1}^*-1)=1.165$ $y_2=y_1+0.025(4y_1-1+4y_{2}^*-1)=1.366$ $y_3=y_2+0.025(4y_2-1+4y_{3}^*-1)=1.612$ $y_4=y_3+0.025(4y_3-1+4y_{4}^*-1)=1.9115$ $y_5=y_4+0.025(4y_4-1+4y_{5}^*-1)=2.277$ $y_6=y_5+0.025(4y_5-1+4y_{6}^*-1)=2.723$ $y_7=y_6+0.025(4y_6-1+4y_{7}^*-1)=3.267$ $y_8=y_7+0.025(4y_7-1+4y_{8}^*-1)=3.93$ $y_9=y_8+0.025(4y_8-1+4y_{9}^*-1)=4.74$ $y_{10}=y_9+0.025(4y_9-1+4y_{10}^*-1)=5.7285$ If we increase the step size to $h = 0.05$, the corresponding approximation to $y(0.5)$ becomes $y_{10}=5.7285$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.