Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.11 Some Higher-Order Differential Equations - Problems - Page 106: 15

Answer

$y=\sec x$

Work Step by Step

We are given: $yy''=2(y')^2+y^2$ Suppose that $u=\frac{dy}{dx}$ Now, $\frac{du}{dx}=\frac{d^2y}{dx^2}=u\frac{du}{dy}$ Subsitute to the equation: $y\frac{du}{dx}-2u^2-y^2=0$ $u\frac{du}{dy}-\frac{2}{y}u^2=y$ Let $t=u^2 \rightarrow \frac{dt}{dx}=2u\frac{du}{dx}$ The equation becomes: $\frac{1}{2}\frac{dt}{dx}-\frac{2}{y}t=y$ $\frac{dt}{dx} -\frac{4}{y}t=-2y$ Integrating factor: $I=e^{-\int \frac{4}{y}dy}=e^{-4\ln y}=y^{-4}$ Hence, $\frac{d}{dy}(y^{-4}t)=2y^{-3}$ Integrating both sides: $y^{-4}t=-y^{-2}+C$ $t=-y^{2}+Cy^4$ $u^2=Cy^4-y^2$ $u=\pm \sqrt Cy^4-y^2$ $\frac{dy}{dx}=\pm \sqrt Cy^4-y^2$ $\pm dx=\frac{dy}{y\sqrt Cy^2-1}$ $\rightarrow \pm dx=\frac{dt}{t\sqrt t^2-1}$ Integrating both sides: $\sec^{-1}t=\pm x+ C$ $t=\pm \sec x+C_1$ since $\sec (-x)=\sec x$ $\rightarrow \sqrt Cy=\pm \sec (x+C_1)$ We are given: $y(0)=1 \rightarrow \sqrt C=\pm sec C_1$ and $y'(0)=0 \rightarrow \sqrt Cy'=\pm \sec x+C_1\tan x+C_1$ $\rightarrow \pm \sec C_1 \tan C_1=0$ We get: $C_1=0 \wedge C=1$ Since $\sec x $ can not be zero: $\tan C_1 =0 \rightarrow C_1=0$ The final solution is: $y=\sec x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.