Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.11 Some Higher-Order Differential Equations - Problems - Page 106: 16

Answer

$y=a \cos wx$

Work Step by Step

We are given: $y''=w^2y$ Suppose that $u=\frac{dy}{dx}$ Now, $\frac{du}{dx}=\frac{d^2y}{dx^2}=u\frac{du}{dy}$ Subsitute to the equation: $\frac{du}{dx}=w^2y$ $u\frac{du}{dy}=w^2y$ $udu=w^2ydy$ Integrating both sides: $u^2=w^2y^2+C$ $u=\pm \sqrt w^2y^2+C$ $\frac{dy}{dx}=\pm \sqrt w^2y^2+C$ We are given: $y(0)=a$ and $y'(0)=0$ $ \rightarrow \pm \sqrt w^2a^2+C=0$ $\rightarrow C=w^2a^2$ The equation becomes: $\frac{dy}{dx}=\pm w \sqrt y^2-a^2$ $\pm w dx=\frac{dy}{\sqrt y^2-a^2}$ To integrate right side, we let: $t=\sec ^{-1}(\frac{1}{a})y$ The equation becomes: $\frac{dy}{\sqrt y^2-a^2}=\int sec t dt$ $\frac{dy}{\sqrt y^2-a^2}=\ln (tan t + \sec t)$ $\frac{dy}{\sqrt y^2-a^2}=\ln(\tan \sec^{-1}\frac{1}{a}y+\sec \sec ^{-1}\frac{1}{a}y)$ $\frac{dy}{\sqrt y^2-a^2}=\cos ^{-1}(\frac{y}{a})$ Hence, $\cos ^{-1}(\frac{y}{a})=\pm wx +C_1$ $\frac{y}{a}=\cos (wx \pm C_1)$ $y=a \cos (wx \pm C_1) $ $\rightarrow y'=aw \sin (wx \pm C_1)$ We are given: $y'(0)=0 \rightarrow \pm aw \sin (\pm C_1)$ Hence, $C_1=0$ The final solution is: $y=a \cos wx$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.