Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.11 Some Higher-Order Differential Equations - Problems - Page 106: 18

Answer

$y=\int e^{-p(x)dx}[e^{-\int p(x)dx}q(x)dx+C]dx+C_1$

Work Step by Step

We are given: $y''+p(x)y'=q(x)$ Suppose that $u=\frac{dy}{dx}$ Now, $\frac{du}{dx}=\frac{d^2y}{dx^2}$ Subsitute to the equation: $\frac{du}{dx}+p(x)u=q(x)$ $\frac{u}{\sqrt 1+u^2}du=\frac{1}{a}dy$ Since this is a linear equation, we can get: $u=e^{-p(x)dx}[e^{-\int p(x)dx}q(x)dx+C]$ $\frac{dy}{dx}=e^{-p(x)dx}[e^{-\int p(x)dx}q(x)dx+C]$ Integrating both sides: $\int \frac{dy}{dx}=\int e^{-p(x)dx}[e^{-\int p(x)dx}q(x)dx+C]$ $y=\int e^{-p(x)dx}[e^{-\int p(x)dx}q(x)dx+C]dx+C_1$ The solution is: $y=\int e^{-p(x)dx}[e^{-\int p(x)dx}q(x)dx+C]dx+C_1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.