Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.11 Some Higher-Order Differential Equations - Problems - Page 106: 17

Answer

$y=a \cos (\frac{x}{a})$

Work Step by Step

We are given: $y''=\frac{1}{a}\sqrt 1+(y')^2$ Suppose that $u=\frac{dy}{dx}$ Now, $\frac{du}{dx}=\frac{d^2y}{dx^2}=u\frac{du}{dy}$ Subsitute to the equation: $\frac{du}{dx}=\frac{1}{a}\sqrt 1+(y')^2$ $\frac{u}{\sqrt 1+u^2}du=\frac{1}{a}dy$ Integrating both sides: $\sqrt 1+u^2=\frac{1}{a}y+C$ We are given: $y(0)=a$ and $y'(0)=0$ $\rightarrow C=0$ The equation becomes: $\sqrt 1+u^2=\frac{1}{a}y$ $1+u^2=\frac{1}{a^2}y^2$ $u=\pm \sqrt \frac{1}{a^2}y^2-1$ $\frac{dy}{dx}=\pm \sqrt \frac{1}{a^2}y^2-1$ $\frac{dy}{dx}=\pm \frac{1}{|a|}\sqrt y^2-a^2$ $\frac{dy}{\sqrt y^2-a^2}=\pm \frac{1}{|a|}dx$ Integrating both sides: $\int \frac{dy}{\sqrt y^2-a^2}=\pm \int \frac{1}{|a|}dx$ To integrate left side, we let: $t=\sec ^{-1}(\frac{1}{a})y \rightarrow y=a \sec t$ The equation becomes: $\frac{dy}{\sqrt y^2-a^2}=\int sec t dt$ $\frac{dy}{\sqrt y^2-a^2}=ln|\tan \sec ^{-1}(\frac{1}{a})y+\sec \sec^{-1}(\frac{1}{a})y|$ $\frac{dy}{\sqrt y^2-a^2}=\cos ^{-1}(\frac{1}{a})y$ Hence, $\cos ^{-1}(\frac{y}{a})=\pm \frac{1}{|a|}x +C_1$ $\frac{y}{a}=\cos ( \frac{1}{|a|}x \pm C_1)$ $y=a \cos ( \pm \frac{1}{|a|}x + C_1) $ We are given: $y(0)=a \rightarrow a=a\cos (C_1)$ Hence, $C_1=0$ The final solution is: $y=a \cos (\frac{x}{a})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.