Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.7 Modeling Problems Using First-Order Linear Differential Equations - Problems - Page 69: 1

Answer

$3.52$ g/L

Work Step by Step

To find the amount of the chemical in the container, we obtain: $$\frac{dA}{dt}=c_1r_1$$ We are given: $c_1=5$ $r_1=6$ $r_2=3$ $t=0$ $A=1500$ and $V(t)=(r_1-r_2)t+V_0=600+3t$ Putting the values: $$\frac{dA}{dt}=5\times6-3\times\frac{A}{600+3t}$$ $$\frac{dA}{dt}+\times\frac{3A}{600+3t}=30$$ $$\frac{dA}{dt}+\times\frac{A}{200+t}=30$$ Solve for $A$: $$A=e^{-\int \frac{1}{200+t}}dt(c+\int e^{\int \frac{1}{200+t }dt}30dt)$$ where $c$ is a constant of integration. $$A=e^{-\ln (200+t)}dt(c+\int 30e^{\int \ln (200+t)}dt)$$ $$A=\frac{1}{200+t}(c+30(200t+\frac{t^2}{2}))$$ Find $c$: $1500=\frac{c}{200} \rightarrow c=300000$ Find $A$: $$A=\frac{300000}{200+t}+\frac{30(200t+\frac{t^2}{2})}{200+t}$$ After one hour (60 minutes), the amount of salt is: $$A(60)=\frac{300000}{200+t}+\frac{30(200\times60+\frac{60^2}{2})}{200+60}=\frac{35700}{13}$$ The concentration of chemical in the tank after one hour is: $$c_2=\frac{A}{V}=\frac{\frac{35700}{13}}{600+3\times60}=3.52$$ g/L
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.