Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.7 Modeling Problems Using First-Order Linear Differential Equations - Problems - Page 69: 2

Answer

$196$ gm

Work Step by Step

To find the amount of the chemical in the container, we obtain: $$\frac{dA}{dt}=c_1r_1-c_2r_2$$ We are given: $c_1=4$ $r_1=2$ $r_2=1$ $t=0$ $A=20$ and $V(t)=(r_1-r_2)t+V_0=600+3t$ Putting the values: $$\frac{dA}{dt}=4\times2-\frac{A}{10+t}$$ $$\frac{dA}{dt}+\frac{A}{10+t}=8$$ Solve for $A$: $$A=e^{-\int \frac{1}{10+t}}dt(c+\int e^{\int \frac{1}{10+t }dt}8dt)$$ where $c$ is a constant of integration. $$A=e^{-\ln (10+t)}dt(c+\int e^{\int \ln (10+t)}8dt)$$ $$A=\frac{1}{10+t}(c+\int(10+t)8dt)$$ $$A=\frac{c}{10+t}+\frac{1}{10+t}\times \frac{8}{2}(10+t)^2$$ $$A=\frac{c}{10+t}+4(10+t)$$ Find $c$: $20=\frac{c}{10} +40\rightarrow c=-200$ Find $A$: $$A=\frac{300000}{200+t}+\frac{30(200t+\frac{t^2}{2})}{200+t}$$ The amount of salt at everytime is: $$A(60)=80-60e^{-\frac{1}{10}}$$ After 40 minutes, the amount of salt is: $$A=\frac{-200}{10+40}+4\times50=196$$ gm
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.