Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.7 Modeling Problems Using First-Order Linear Differential Equations - Problems - Page 69: 3

Answer

$c_2=0.5625$g/L

Work Step by Step

To find the amount of the chemical in the tank, we obtain: $$\frac{dA}{dt}=c_1r_1-c_2r_2$$ We are given: $c_1=0.5$ $r_1=6$ $r_2=4$ $A=20$ and $V(t)=(r_1-r_2)t+V_0=100+2t$ Since $V=200 \rightarrow 200=100+2t \rightarrow t=50$ Putting the values: $$\frac{dA}{dt}=6\times0.5-4\frac{A}{V}$$ $$\frac{dA}{dt}+\frac{2A}{50+t}=3$$ Solve for $A$: $$A=e^{-\int \frac{2}{50+t}}dt(c+\int 3e^{\int \frac{2}{50+t }dt}dt)$$ where $c$ is a constant of integration. $$A=e^{-2\ln (50+t)}dt(c+\int 3e^{\int 2\ln (50+t)}dt)$$ $$A=\frac{1}{(50+t)^2}(c+\int3(50+t)^2dt)$$ $$A=\frac{c}{(50+t)^2}+(50+t)$$ Since $A(0)=100 $ Find $c$: $100=\frac{c}{50^2} +50\rightarrow c=50^3$ When tank overflows $$A=\frac{50^3}{(50+t)^2}+(50+t)=\frac{50^3}{100}+100=112.5$$g When tank is full, the concentration is: $$c_2=\frac{A}{V}=\frac{112.5}{200}=0.5625$$g/L
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.