Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.7 Modeling Problems Using First-Order Linear Differential Equations - Problems - Page 69: 4

Answer

300g

Work Step by Step

To find the amount of the chemical in the tank, we obtain: $$\frac{dA}{dt}=c_1r_1-c_2r_2$$ We are given: $c_1=10$ $r_1=4$ $r_2=2$ and $V(t)=(r_1-r_2)t+V_0=20+2t$ Since $V=40 \rightarrow 40=20+2t \rightarrow t=10$ Putting the values: $$\frac{dA}{dt}=10\times4-2\frac{A}{V}$$ $$\frac{dA}{dt}+\frac{A}{10+t}=40$$ Solve for $A$: $$A=e^{-\int \frac{1}{10+t}}dt(c+\int 40e^{\int \frac{-1}{10+t }dt}dt)$$ where $c$ is a constant of integration. $$A=e^{-\ln (10+t)}dt(c+\int 40e^{\int \ln (10+t)}dt)$$ $$A=\frac{1}{(10+t)^2}(c+\int40(10+t)^2dt)$$ $$A=\frac{c}{(10+t)^2}+20(10+t)$$ Since $A(0)=0 $ Find $c$: $0=\frac{c}{10} +200\rightarrow c=-2000$ The amount of salt in the tank at any time: $$A=\frac{-2000}{10+t}+20(10+t)$$ When $t=10$: $$A=\frac{-2000}{10+10}+20(50+10)=\frac{-2000}{20}+20\times60=300$$g
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.