Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.7 Modeling Problems Using First-Order Linear Differential Equations - Problems - Page 69: 5

Answer

$t=20(\sqrt[3] 2 -1)$ minutes

Work Step by Step

To find the amount of the chemical in the tank, we obtain: $$\frac{dA}{dt}=c_1r_1-c_2r_2$$ We are given: $c_1=1$ $r_1=3$ $r_2=2$ As $V(t)=r_1 \Delta t-r_2 \Delta \rightarrow \frac{dV}{dt}=1$ Integrate: $ \int dV=\int dt=t+C$ Since $V=20 \rightarrow V=20+t $ Putting the values: $$\frac{dA}{dt}=3\times1-2\frac{A}{V}$$ $$\frac{dA}{dt}+\frac{A}{20+t}=3$$ Multiply both sides by $(20+t)^2$ $$\frac{dA}{dt}(20+t)^2+2A(20+t)=3(20+t)^2$$ where $c$ is a constant of integration. $$\frac{dA}{dt}[(20+t)^2A]=3(20+t)^2$$ Solve for $A$: $$A=\frac{(20+t)^3+C}{(20+t)^2}$$ Since $A(0)=0 $ Find $C$: $C=-20^3$ The concentration is given by: $$c_2=\frac{A}{20+t}=\frac{20+t)^3-20^3}{(20+t)^3}$$ Putting the values: $$\frac{20+t)^3-20^3}{(20+t)^3}=\frac{1}{2}$$ $$t=20(\sqrt[3] 2 -1)$$ minutes
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.