Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - 1.4 Exercises - Page 42: 29

Answer

$A=\left[\begin{array}{ l l l }2&1&1\\2&2&0\\2&0&3\end{array}\right]$

Work Step by Step

Let$A=\left[\begin{array}{ l l l }2&1&1\\2&2&0\\2&0&3\end{array}\right]$be matrix is not in echelon matrix. Reduce matrix to reduce echelon form: $\left[\begin{array}{ l l l }2&1&1\\2&2&0\\2&0&3\end{array}\right]$ multiply first row' with - 1and add to sccond and third $\sim \left[\begin{array}{ c c c }2&1&1\\0&1&-1\\0&-1&2\end{array}\right]$ add second row to third $\sim \left[\begin{array}{ c c cc}2&1&1\\0&1&-1\\0&0&1\end{array}\right]$ divide first row with 2 $\sim \left[\begin{array}{ c c c }1&1/2&1/2\\0&1&-1\\0&0&1\end{array}\right]$ add third row to second and multiply third row with-1/2 and add to first $\sim \left[\begin{array}{ c c c }1&1/2&0\\0&1&0\\0&0&1\end{array}\right]$ multiply second row with -1/2and add to first $\sim \left[\begin{array}{ c c c }1&0&0\\0&1&0\\0&0&1\end{array}\right]$ Since there are 3 pivot columns they span $R^3$. $A=\left[\begin{array}{ l l l }2&1&1\\2&2&0\\2&0&3\end{array}\right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.