Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.3 Exercises - Page 686: 1

Answer

$a.$ $(2,\displaystyle \frac{\pi}{3}), \quad (2,\frac{7\pi}{3})\quad (-2,\frac{4\pi}{3})$ all represent the same point A. $b.$ $(1,-\displaystyle \frac{3\pi}{4}), \quad(1,\frac{5\pi}{4}), \quad(-1,\frac{\pi}{4}), \quad$all represent the same point $B.$ $c.$ $(-1,\displaystyle \frac{\pi}{2}), \quad (-1,\frac{5\pi}{2}),\quad (+1,\frac{3\pi}{2}),$ all represent the same point $C$.

Work Step by Step

$(r,\theta\pm 2k\pi),\ k\in \mathbb{Z}$ and $(r,\theta)$ represent the same point $(-r,\theta\pm 2k\pi),\ k\in \mathbb{Z}$ represent the point symmetric to $(r,\theta)$, over the pole (origin). $(r,\theta\pm(2k+1)\pi),\ k\in \mathbb{Z}$ represent the point symmetric to $(r,\theta)$, over the pole (origin). $(-r,\theta\pm(2k+1)\pi),\ k\in \mathbb{Z}$ and $(r,\theta)$ represent the same point. Leaving the same r, adding an even multiple of $\pi$ to $\theta$ yields the same point. Changing the sign of r, adding an odd multiple of $\pi$ to $\theta$ yields the same point. $a.$ $(2,\displaystyle \frac{\pi}{3}), \quad (2,\frac{7\pi}{3})\quad (-2,\frac{4\pi}{3})$ all represent the same point A. $b.$ $(1,-\displaystyle \frac{3\pi}{4}), \quad(1,\frac{5\pi}{4}), \quad(-1,\frac{\pi}{4}), \quad$all represent the same point $B.$ $c.$ $(-1,\displaystyle \frac{\pi}{2}), \quad (-1,\frac{5\pi}{2}),\quad (+1,\frac{3\pi}{2}),$ all represent the same point $C$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.