Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.3 Exercises - Page 686: 5

Answer

(a) (i) $(2\sqrt 2, \frac{7\pi}{4})$; (ii) $ (-2\sqrt 2, \frac{3\pi}{4})$ (b) (i) $(2, \frac{2\pi}{3})$; (ii)$ (-2,\frac{5\pi}{3})$

Work Step by Step

(a) $r =\sqrt{(x)^2+(y)^2} = \sqrt {(2)^2 + (-2)^2} = \sqrt {4 + 4} = \sqrt 8 = 2\sqrt 2$ $tan(\theta) = \frac{y}{x} = \frac{-2}{2} = -1$ $\theta = tan^{-1}(-1)$ $\theta = \frac{3\pi}{4}$ or $\theta = \frac{7\pi}{4}$ But, the given point (2,-2) lies in the fourth quadrant, therefore, the correct angle is $\theta = \frac{7\pi}{4}$. (i) $(2\sqrt 2, \frac{7\pi}{4})$ To get the same coordinate, but with r < 0, we should multiply the "r" by $-1$, and add* or subtract* "$\pi$" from the angle: * The angle must be between: 0 $\leq\theta \lt 2\pi$ (ii) $(-2\sqrt 2, \frac{7\pi}{4} - \pi) = (-2\sqrt 2, \frac{3\pi}{4})$ (b) $r = \sqrt{(x)^2+(y)^2} = \sqrt{(-1)^2 + (\sqrt 3)^2} = \sqrt{1 + 3} = 2$ $tan(\theta) = \frac{y}{x} = \frac{\sqrt 3}{-1} = -\sqrt 3$ $\theta = tan^{-1}(-\sqrt 3)$ $\theta = \frac{2\pi}{3}$ or $\theta = \frac{5\pi}{3}$ But, the given point $(-1, \sqrt 3)$ lies in the second quadrant, therefore, the correct angle is $\theta = \frac{2\pi}{3}$. (i) $(2, 2\pi/3)$ To get the same coordinate, but with r < 0, we should multiply the "r" by $-1$, and add* or subtract* "$\pi$" from the angle: * The angle must be between: 0 $\leq\theta \lt 2\pi$ (ii)$ (-2, 2\pi/3 + \pi) = (-2,5\pi/3)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.