Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.3 Exercises - Page 686: 3

Answer

$a.\quad (-1,0)$ $b.\quad (-1, -\sqrt{3})$ $c.\quad (\sqrt{2}, -\sqrt{2})$.

Work Step by Step

Polar coordinates $(r,\theta)$ Cartesian coordinates:$ \quad(r\cos\theta,r\sin\theta)$ $a.$ Plot point A: r is positive, terminal side: $\pi$ (-x axis, at distance 1) Cartesian coordinates:$\quad (1\cdot\cos\pi,1\cdot\sin\pi)= (-1,0)$. $b.$ Plot point B: r is positive, terminal side: $-2\pi/3$ ($ \pi/3$ below the -x axis, at distance 2) Cartesian coordinates:$\quad $ $(2\displaystyle \cos(-\frac{2\pi}{3}),2\sin(-\frac{2\pi}{3}))= (2(-\displaystyle \frac{1}{2}),2(-\frac{\sqrt{3}}{2}))= (-1, -\sqrt{3})$. $c.$ Plot point C: r is negative, terminal side is $\displaystyle \frac{3\pi}{4}$+$\displaystyle \pi=\frac{7\pi}{4}$ ($ \pi/$4 below the +x axis, at distance 2) Cartesian coordinates:$\quad $ $(-2\displaystyle \cos\frac{3\pi}{4},-2\sin\frac{3\pi}{4})= (-2(-\displaystyle \frac{\sqrt{2}}{2}),-2(\frac{\sqrt{2}}{2}))= (\sqrt{2}, -\sqrt{2})$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.