Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.3 Exercises - Page 686: 6

Answer

(a) (i) $(6 , \frac {\pi} 6)$; (ii) $(-6 , \frac {7\pi} 6)$ (b) (i) $(\sqrt 5, 2\pi - tan^{-1}(2))$ (ii) $(-\sqrt 5, \pi - tan^{-1}(2))$

Work Step by Step

(a) 1. Find the angle: $tan(\theta) = \frac{y}{x} = \frac3 {3\sqrt 3} = \frac{\sqrt 3}{3}$ $tan(\theta) = \frac {\sqrt 3} 3 \longrightarrow \theta = tan^{-1}(\frac{\sqrt 3} 3) = \frac{\pi}{6} or \frac{7\pi}{6}$ 2. Calculate $r$: $3 \sqrt 3 = rcos(\theta) = rcos(\frac{\pi}{6})$ $3 \sqrt 3 = \frac {\sqrt 3} 2 r$ $r = 6 $ $3\sqrt 3= r cos(\frac{7\pi}{6})$ $3 \sqrt 3 = r(-\frac{\sqrt 3}{2})$ $r = -6$ Thus, the points are: $(6 , \frac {\pi} 6)$ and $(-6 , \frac {7\pi} 6)$ ---- (b) 1. Find $r$: $r^2 = x^2 + y^2 = 1^2 + (-2)^2 = 5$ $r = \sqrt 5$ 2. Find the angle: $tan (\theta) = \frac y x = \frac {-2} 1 = -2$ $\theta = tan^{-1} (-2) = -tan^{-1}(2)$ Since the exercise requires that $0 \leq \theta \leq 2\pi$, $ -tan^{-1}(2)$ is not valid, so we should add $2\pi$ to it, so we get the same angle, but between $0$ and $2\pi$. $\theta = 2\pi - tan^{-1}(2)$ 3. Determine the oposite angle. To do that, we should add or remove $\pi$ from the angle. In this case, we will remove, so the angle isn't greater than $2\pi$. $\theta_2 = 2\pi - tan^{-1}(2) - \pi = \pi - tan^{-1}(2)$ This angles corresponds to the same point, if we multiply r by $-1$. $r = -\sqrt 5$ Thus, these are the points: $(\sqrt 5, 2\pi - tan^{-1}(2))$ and $(-\sqrt 5, \pi - tan^{-1}(2))$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.