Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 1: Functions - Section 1.1 - Functions and Their Graphs - Exercises 1.1 - Page 12: 32

Answer

a. $ y=0$ when $0\leq x\leq \frac{T}{2}$ $ y=\frac{2}{T}x-1$ when $\frac{T}{2}\leq x\leq T $ b. $ y=A $ when $0\leq x \lt \frac{T}{2}$ $ y=-A $ when $\frac{T}{2}\leq x \lt T $ $ y=A $ when $ T\leq x \lt \frac{3T}{2}$ $ y=-A $ when $\frac{3T}{2}\leq x \lt 2T $

Work Step by Step

a. We can see that the two line segments are: $(0,0)$ to $(\frac{T}{2},0)$ and $(\frac{T}{2},0)$ to $(T,1)$. Using the formula of line equation passing two points: Left line segment: $\frac{y-0}{x-\frac{T}{2}}=\frac{0-0}{0-\frac{T}{2}}$ which gives $ y=0$ when $0\leq x\leq \frac{T}{2}$ Right line segment: $\frac{y-1}{x-T}=\frac{0-1}{\frac{T}{2}-T}$ which gives $ y=\frac{2}{T}x-1$ when $\frac{T}{2}\leq x\leq T $ b. The four line segments are: $(0,A) to (\frac{T}{2},A)$, $(\frac{T}{2},-A) to (T,A)$, $(T,A) to (\frac{3T}{2},A)$ and $(\frac{3T}{2},-A) to (2T,-A)$ The equations can be easily found as: $ y=A $ when $0\leq x \lt \frac{T}{2}$ $ y=-A $ when $\frac{T}{2}\leq x \lt T $ $ y=A $ when $ T\leq x \lt \frac{3T}{2}$ $ y=-A $ when $\frac{3T}{2}\leq x \lt 2T $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.