University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 1 - Section 1.2 - Combining Functions; Shifting and Scaling Graphs - Exercises - Page 19: 13

Answer

$\mathrm{See\:the\:table\:below.}$

Work Step by Step

$d.\quad (f\circ g)(x)=f(g(x))$ $=\frac{\frac{x}{x-1}}{\frac{x}{x-1}-1}\ =\ \frac{\frac{x}{x-1}}{\frac{x-x+1}{x-1}}$ $=\frac{\frac{x}{x-1}}{\frac{1}{x-1}}=x$ $e.\quad$ Let's say $\ g(x)=y$. Then our composite function is given as: $(f\circ g)(x)=f(g(x))$ $f(y)=1+\frac{1}{y}$ $x=1+\frac{1}{y}$ Solve this equation for $\ y\ $ which will give us the value of $\ g(x).$ $xy=y+1$ $y(x-1)=1$ $y=\frac{1}{x-1}$ $g(x)=\frac{1}{x-1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.