University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 1 - Section 1.2 - Combining Functions; Shifting and Scaling Graphs - Exercises - Page 19: 17

Answer

$a.\quad f\circ g=\sqrt{\frac{1}{x}+1}$ $\ \ \ \ \quad g\circ f=\frac{1}{\sqrt{x+1}}$ $b.\quad \mathrm{Domains:}$ $i.\quad f\circ g=\sqrt{\frac{1}{x}+1}$ $\mathrm{Domain:}\ \ (-\infty,-1]\cup (0,\infty)$ $ii.\quad g\circ f=\frac{1}{\sqrt{x+1}}$ $\mathrm{Domain:}\ \ (-1,\infty)$ $c.\quad \mathrm{Ranges:}$ $i.\quad f\circ g=\sqrt{\frac{1}{x}+1}$ $\mathrm{Range:}\ \ [0,1)\cup (1,\infty)$ $ii.\quad g\circ f=\frac{1}{\sqrt{x+1}}$ $\mathrm{Range:}\ \ (0,\infty)$

Work Step by Step

$a.\quad f\circ g=\sqrt{\frac{1}{x}+1}$ $\ \ \ \ \quad g\circ f=\frac{1}{\sqrt{x+1}}$ $b.\quad \mathrm{Domains:}$ $i.\quad f\circ g=\sqrt{\frac{1}{x}+1}$ We can take square root only of positive numbers. $\frac{1}{x}+1\ge 0\quad \Rightarrow \quad \frac{1}{x}\ge -1$ It is true for any positive value of $\ x\ $, where it cannot be equal to zero becauase of it's position in the denominator. When $\ x\ $ is negative, then we will have: $\frac{1}{x}\ge -1\ \ \rightarrow \ \ 1\le -x\ \ \rightarrow \ \ x\le -1$ $\mathrm{Domain:}\ \ (-\infty,-1]\cup (0,\infty)$ $ii.\quad g\circ f=\frac{1}{\sqrt{x+1}}$ $x+1\ge0\ $ where $\ x\ge-1\ $, provided that $\ x\ $ cannot be $\ -1.$ This is because when $\ x=-1\ $, we will get zero in the denominator which is not accepted. $\mathrm{Domain:}\ \ (-1,\infty)$ $c.\quad \mathrm{Ranges:}$ $i.\quad f\circ g=\sqrt{\frac{1}{x}+1}$ The square root will always yield positive number as a result. The function can get any positive number in result except $\ 1\ $, because the fraction $\ \frac{1}{x}\ $ must be zero in order to get $\ 1\ $ as the result. $\mathrm{Range:}\ \ [0,1)\cup (1,\infty)$ $ii.\quad g\circ f=\frac{1}{\sqrt{x+1}}$ Fraction with positive denominator can obtain any positive value. $\mathrm{Range:}\ \ (0,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.