University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.4 - One-Sided Limits - Exercises - Page 85: 16

Answer

$$\lim_{h\to0^-}\frac{\sqrt{6}-\sqrt{5h^2+11h+6}}{h}=-\frac{11\sqrt6}{12}$$

Work Step by Step

$$\lim_{h\to0^-}\frac{\sqrt{6}-\sqrt{5h^2+11h+6}}{h}$$ To find one-side limit algebraically, we still apply the limit laws like for the two-side limits as normal. $$A=\lim_{h\to0^-}\frac{\sqrt{6}-\sqrt{5h^2+11h+6}}{h}$$ Here we need to multiply both nominator and denominator by $\sqrt{6}+\sqrt{5h^2+11h+6}$ to eliminate the $h$ in the denominator. - Nominator: $(\sqrt{6}-\sqrt{5h^2+11h+6})(\sqrt{6}+\sqrt{5h^2+11h+6})=6-(5h^2+11h+6)=6-5h^2-11h-6=-5h^2-11h$ - Denominator: $h(\sqrt{6}+\sqrt{5h^2+11h+6})$ Hence, $$A=\lim_{h\to0^-}\frac{-5h^2-11h}{h(\sqrt{6}+\sqrt{5h^2+11h+6})}$$ $$A=\lim_{h\to0^-}\frac{-5h-11}{\sqrt{6}+\sqrt{5h^2+11h+6}}$$ $$A=\frac{-5\times0-11}{\sqrt6+\sqrt{5\times0^2+11\times0+6}}$$ $$A=\frac{-11}{\sqrt6+\sqrt6}=\frac{-11}{2\sqrt6}=\frac{-11\sqrt6}{2\times6}=\frac{-11\sqrt6}{12}$$ Therefore, $$\lim_{h\to0^-}\frac{\sqrt{6}-\sqrt{5h^2+11h+6}}{h}=-\frac{11\sqrt6}{12}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.