University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.4 - One-Sided Limits - Exercises - Page 85: 31

Answer

$$\lim_{\theta\to0}\frac{1-\cos\theta}{\sin2\theta}=0$$

Work Step by Step

$$A=\lim_{\theta\to0}\frac{1-\cos\theta}{\sin2\theta}=\lim_{\theta\to0}\frac{1-\cos\theta}{2\sin\theta\cos\theta}$$ Multiply both numerator and denominator by $(1+\cos\theta)$: $$A=\lim_{\theta\to0}\frac{(1-\cos\theta)(1+\cos\theta)}{2\sin\theta\cos\theta(1+\cos\theta)}$$ $$A=\lim_{\theta\to0}\frac{1-\cos^2\theta}{2\sin\theta\cos\theta(1+\cos\theta)}$$ Recall that $\sin^2\theta=1-\cos^2\theta$ $$A=\lim_{\theta\to0}\frac{\sin^2\theta}{2\sin\theta\cos\theta(1+\cos\theta)}$$ $$A=\lim_{\theta\to0}\frac{\sin\theta}{2\cos\theta(1+\cos\theta)}$$ $$A=\frac{\sin0}{2\cos0(1+\cos0)}$$ $$A=\frac{0}{2\times1(1+1)}=0$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.