University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.4 - One-Sided Limits - Exercises - Page 85: 18

Answer

(a) $\lim_{x\to1^+}\frac{\sqrt{2x}(x-1)}{|x-1|}=\sqrt2$ (b) $\lim_{x\to1^-}\frac{\sqrt{2x}(x-1)}{|x-1|}=-\sqrt2$

Work Step by Step

- For $x\gt1$: $$x-1\gt0\Rightarrow|x-1|=x-1$$ - For $x\lt1$: $$x-1\lt0\Rightarrow|x-1|=-(x-1)$$ a) $$A=\lim_{x\to1^+}\frac{\sqrt{2x}(x-1)}{|x-1|}$$ As $x\to1^+$, we only consider the values of $x$ to the right of $1$, which means $x\gt1$, so $|x-1|=x-1$. Therefore, $$A=\lim_{x\to1^+}\frac{\sqrt{2x}(x-1)}{x-1}$$ $$A=\lim_{x\to1^+}\sqrt{2x}$$ $$A=\sqrt{2\times1}=\sqrt2$$ b) $$B=\lim_{x\to1^-}\frac{\sqrt{2x}(x-1)}{|x-1|}$$ As $x\to1^-$, we only consider the values of $x$ to the left of $1$, which means $x\lt1$, so $|x-1|=-(x-1)$. Therefore, $$B=\lim_{x\to1^-}\frac{\sqrt{2x}(x-1)}{-(x-1)}$$ $$B=\lim_{x\to1^-}-\sqrt{2x}$$ $$B=-\sqrt{2\times1}=-\sqrt2$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.