University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.4 - One-Sided Limits - Exercises - Page 85: 33

Answer

$$\lim_{t\to0}\frac{\sin(1-\cos t)}{1-\cos t}=1$$

Work Step by Step

$$\lim_{t\to0}\frac{\sin(1-\cos t)}{1-\cos t}$$ Let's take $\theta=1-\cos t$ Then as $t\to0$, $\theta\to(1-\cos0)=1-1=0$ Therefore, $$\lim_{t\to0}\frac{\sin(1-\cos t)}{1-\cos t}=\lim_{\theta\to0}\frac{\sin\theta}{\theta}$$ Apply Theorem 7 here: $$\lim_{t\to0}\frac{\sin(1-\cos t)}{1-\cos t}=1$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.