Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 1 - Section 1.4 - Rational Expressions - 1.4 Exercises - Page 44: 78

Answer

$\sqrt{1+\Big(x^{3}-\dfrac{1}{4x^{3}}\Big)^{2}}=\dfrac{4x^{6}+1}{4x^{3}}$

Work Step by Step

$\sqrt{1+\Big(x^{3}-\dfrac{1}{4x^{3}}\Big)^{2}}$ Evaluate $\Big(x^{3}-\dfrac{1}{4x^{3}}\Big)^{2}$ inside the root: $\sqrt{1+\Big(x^{3}-\dfrac{1}{4x^{3}}\Big)^{2}}=...$ $...=\sqrt{1+\Big[x^{6}-2(x^{3})\Big(\dfrac{1}{4x^{3}}\Big)+\Big(\dfrac{1}{4x^{3}}\Big)^{2}\Big]}=...$ $...=\sqrt{1+\Big(x^{6}-\dfrac{1}{2}+\dfrac{1}{16x^{6}}\Big)}=...$ Simplify the expression inside the root: $...=\sqrt{1+x^{6}-\dfrac{1}{2}+\dfrac{1}{16x^{6}}}=\sqrt{x^{6}+\dfrac{1}{16x^{6}}+\dfrac{1}{2}}=...$ $...=\sqrt{\dfrac{x^{6}(16x^{6})+1+8x^{6}}{16x^{6}}}=\sqrt{\dfrac{16x^{12}+8x^{6}+1}{16x^{6}}}=...$ Factor the numerator of the expression inside the root: $...=\sqrt{\dfrac{(4x^{6}+1)^{2}}{16x^{6}}}=...$ Evaluate the root: $...=\dfrac{4x^{6}+1}{4x^{3}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.