Answer
$\dfrac{(1-x^{2})^{1/2}+x^{2}(1-x^{2})^{-1/2}}{1-x^{2}}=\dfrac{1}{(1-x^{2})^{3/2}}$
Work Step by Step
$\dfrac{(1-x^{2})^{1/2}+x^{2}(1-x^{2})^{-1/2}}{1-x^{2}}$
Take out common factor $(1-x^{2})^{-1/2}$ from the numerator and simplify:
$\dfrac{(1-x^{2})^{1/2}+x^{2}(1-x^{2})^{-1/2}}{1-x^{2}}=\dfrac{(1-x^{2})^{-1/2}[(1-x^{2})+x^{2}]}{1-x^{2}}=...$
$...=\dfrac{(1-x^{2})^{-1/2}}{1-x^{2}}=\dfrac{1}{(1-x^{2})(1-x^{2})^{1/2}}=\dfrac{1}{(1-x^{2})^{3/2}}$