Answer
$\dfrac{2(x-y)}{\sqrt{x}-\sqrt{y}}=2\sqrt{x}+2\sqrt{y}$
Work Step by Step
$\dfrac{2(x-y)}{\sqrt{x}-\sqrt{y}}$
Multiply both numerator and denominator by $\sqrt{x}+\sqrt{y}$ and simplify:
$\dfrac{2(x-y)}{\sqrt{x}-\sqrt{y}}=\Big(\dfrac{2(x-y)}{\sqrt{x}-\sqrt{y}}\Big)\Big(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}+\sqrt{y}}\Big)=...$
$...=\dfrac{2(x-y)(\sqrt{x}+\sqrt{y})}{x-y}=2\sqrt{x}+2\sqrt{y}$