Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 1 - Section 1.4 - Rational Expressions - 1.4 Exercises - Page 44: 94

Answer

$\dfrac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}}=-\dfrac{1}{x\sqrt{x+h}+(x+h)\sqrt{x}}$

Work Step by Step

$\dfrac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}}$ Multiply the numerator and the denominator of this expression by the conjugate of the numerator and simplify: $\dfrac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}}=\dfrac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}}\cdot\dfrac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}}=...$ $...=\dfrac{(\sqrt{x})^{2}-(\sqrt{x+h})^{2}}{h\sqrt{x}\sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}=...$ $...=\dfrac{x-x-h}{h\sqrt{x}\sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}=...$ $...=\dfrac{-h}{h\sqrt{x}\sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}=...$ $...=-\dfrac{1}{\sqrt{x}\sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}=...$ $...=-\dfrac{1}{(\sqrt{x})^{2}\sqrt{x+h}+\sqrt{x}(\sqrt{x+h})^{2}}=...$ $...=-\dfrac{1}{x\sqrt{x+h}+(x+h)\sqrt{x}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.