Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 1 - Section 1.8 - Inequalities - 1.8 Exercises - Page 89: 68

Answer

SOLUTION $\frac{(2+x)(2-x)}{x(x-1)} \geq0$ INTERVALS $ [-2,0) (1,2] $ GRAPH Put four numbers in the real number line -2, 0, 1 and 2. 0 and 1 should be with open circle. -2 and 2 with close circlel. Connect -2 and 0. Also, connect 1 and 2.

Work Step by Step

$\frac{3}{x-1}-\frac{4}{x}\geq1$ $\frac{3}{x-1}-\frac{4}{x}-1\geq0$ $\frac{3x-4(x-1)-1(x^{2}-x)}{x(x-1)}\geq0$ $\frac{3x-4x+4-x^{2}+x}{x(x-1)} \geq0$ $\frac{4-x^{2}}{x(x-1)}\geq0$ $\frac{(2+x)(2-x)}{x(x-1)} \geq0$ Key numbers NUMERATOR: x=2 x=-2 DENOMINATOR x=0 x=1 INTERVALS $(-\infty,-2] [-2,0) (0,1) (1,2] [2,\infty)$ test the values $(-\infty,-2]= y(-3)=\frac{(2-3)(2+3)}{-3(-3-1)} \geq0= y(-3)=-0.41$ no solution [-2,0)= $y(-1)=\frac{(2-1)(2+1)}{-1(-1-1)} \geq0= y(-1)=1.5$ Solution (0,1)= y(0.5)=\frac{(2+0.5)(2-0.5)}{0.5(0.5-1)} \geq0= y(0.5)=-15$ No solution (1,2]= y(1.5)=\frac{2+1.5)(2-1.5)}{1.5(1.5-1)} \geq0= y(1.5)=2.3$ Solution $[2,\infty)$= $y(4)=\frac{(2+4)(2-4)}{2(2-1)} \geq0= Y(4)=-8$ No solution SOLUTION $ [-2,0) (1,2] $ GRAPH Put four numbers in the real number line -2, 0, 1 and 2. 0 and 1 should be with open circle. -2 and 2 with close circlel. Connect -2 and 0. Also, connect 1 and 2.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.