Answer
$\sin\theta = \frac{y}{r} = \frac{-12}{13}$
$\cos\theta = \frac{x}{r} = \frac{5}{13}$
$\tan\theta = \frac{y}{x} = \frac{-12}{5}$
$\csc\theta = \frac{r}{y} = \frac{13}{12}$
$\sec\theta = \frac{r}{x} = \frac{13}{5}$
$\cot\theta = \frac{x}{y} = \frac{5}{-12}$
Work Step by Step
$x = 5$
$y = -12$
$r = \sqrt {(5)^2 + (-12)^2}$
$r = \sqrt {25 + 144}$
$r = 13$