Answer
$\sin\theta=\frac{y}{r}=\frac{-4}{\sqrt {65}}=\frac{-4\sqrt {65}}{65}$
$\cos\theta=\frac{x}{r}=\frac{-7}{\sqrt {65}}=\frac{-7\sqrt {65}}{65}$
$\tan\theta=\frac{y}{x}=\frac{-4}{-7}=\frac{4}{7}$
$\csc\theta=\frac{1}{\sin\theta}=-\frac{\sqrt {65}}{4}$
$\sec\theta=\frac{1}{\cos\theta}=-\frac{\sqrt {65}}{7}$
$\cot\theta=\frac{1}{\tan\theta}=\frac{7}{4}$
Work Step by Step
$x=-7$
$y=-4$
$r=\sqrt {(-7)^{2}+(-4)^{2}}=\sqrt {16+49}=\sqrt {65}$