Answer
$\sin\theta=\frac{y}{r}=\frac{-\sqrt 2}{2}$
$\cos\theta=\frac{x}{r}=\frac{-\sqrt 2}{2}$
$\tan\theta=\frac{y}{x}=\frac{-\sqrt 2}{-\sqrt 2}=1$
$\csc\theta=\frac{r}{y}=\frac{2}{-\sqrt 2}=-\sqrt 2$
$\sec\theta=\frac{r}{x}=\frac{2}{-\sqrt 2}=-\sqrt 2$
$\cot\theta=\frac{x}{y}=\frac{-\sqrt 2}{-\sqrt 2}=1$
Work Step by Step
$x=-\sqrt 2$
$y=-\sqrt 2$
$r=\sqrt{(-\sqrt 2)^{2}+(-\sqrt 2)^{2}}=\sqrt {2+2}= 2$