Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 1 - Exercises and Problems - Page 13: 39

Answer

$12\space revolutions\space per\space day$

Work Step by Step

To find the solution, we need to convert 3 degrees/ min into rev/day. $1\space degree= \frac{1}{360}rev,$ so we can multiply degrees by the ratio $\frac{1}{360} rev/degree$ to get revolutions. Similarly $1\space day = 1440\space min$. We can use the conversion factor 1440 min/day to convert minutes to seconds. Combining these two conversions gives, $3^{\circ}\space /min = (\frac{3\space degrees}{min})\times(\frac{1\space rev}{360\space degrees})\times(\frac{1440\space min}{1\space day})$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space= \frac{432}{36}\space rev/day$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space = 12\space rev/day $ $$Answer\space is\space 12\space revolution\space per\space day$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.