Answer
$12\space revolutions\space per\space day$
Work Step by Step
To find the solution, we need to convert 3 degrees/ min into rev/day.
$1\space degree= \frac{1}{360}rev,$ so we can multiply degrees by the ratio $\frac{1}{360} rev/degree$ to get revolutions. Similarly $1\space day = 1440\space min$. We can use the conversion factor 1440 min/day to convert minutes to seconds. Combining these two conversions gives,
$3^{\circ}\space /min = (\frac{3\space degrees}{min})\times(\frac{1\space rev}{360\space degrees})\times(\frac{1440\space min}{1\space day})$
$\space\space\space\space\space\space\space\space\space\space\space\space\space\space= \frac{432}{36}\space rev/day$
$\space\space\space\space\space\space\space\space\space\space\space\space\space\space = 12\space rev/day $
$$Answer\space is\space 12\space revolution\space per\space day$$