Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 1 - Exercises and Problems - Page 13: 48

Answer

$1,304,396\space or\space 1.3\times10^{6}$

Work Step by Step

Let's assume the sun & the earth as spheres, then we can write, Volume of the sphere $= \frac{4}{3}\pi r^{3}$ ; r is the radius of the sphere. Radius of the sun = $696\times10^{6}\space m$ ; From Appendix E Radius of the earth = $6.39\times10^{6}\space m$ ; From Appendix E The volume of the sun $= \frac{4}{3}\pi (696\times10^{6}\space m)^{3}\space -(1)$ The volume of the earth $= \frac{4}{3}\pi (6.39\times10^{6}\space m)^{3}\space -(2)$ From $(1)/(2)=\gt$ No. of earth fit inside the sun $=\frac{\frac{4}{3}\pi (696\times10^{6}\space m)^{3}}{ \frac{4}{3}\pi (6.39\times10^{6}\space m)^{3}}$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=\frac{696^{3}}{6.37^{3}}$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space =1,304,396$ $\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space= 1.3\times10^{6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.