Answer
$\frac{2+x^2}{x^3\sqrt{1-x^2}}$
Work Step by Step
$\frac{-x^3(1-x^2)^{-1/2}-2x(1-x^2)^{1/2}}{x^4}=\frac{-x^3(1-x^2)^{-1/2}(1-x^2)^{1/2}-2x(1-x^2)^{1/2}(1-x^2)^{1/2}}{x^4(1-x^2)^{1/2}}=\frac{-x^3-2x(1-x^2)}{x^4\sqrt{1-x^2}}=\frac{-x^3-2x+2x^3}{x^4\sqrt{1-x^2}}=\frac{2x+x^3}{x^4\sqrt{1-x^2}}=\frac{2+x^2}{x^3\sqrt{1-x^2}}$