Answer
(c) fourth
Work Step by Step
$i^{1}=i$
$i^{2}=-1$
$i^{3}=i^{2}\cdot i=-1\cdot i=-i$
$i^{4} =i^{2}\cdot i^{2}=(-1)(-1)=1$
Since $i^{4}=1$, then $i^{8}=i^{12}=...=i^{4n}=1$, and
$ i^{4n+1}=1\cdot i^{1}=i$
$ i^{4n+2}=1\cdot i^{2}=-1$
$ i^{4n+3}=1\cdot i^{3}=-i$
Every fourth power repeats.