Answer
$1-2i$
Work Step by Step
Recall, $i=\sqrt{-1}$, so $i^{2}=-1$. Thus, we multiply by $\frac{-i}{-i}$ to obtain:
$\displaystyle \frac{2+i}{i}$
$\displaystyle =\frac{2+i}{i}*\frac{-i}{-i}$
$\displaystyle=\frac{-i(2+i)}{-i*i}$
$\displaystyle =\frac{-2i-i^{2}}{-i^{2}}$
$\displaystyle=\frac{-2i-(-1)}{-(-1)}$
$\displaystyle=\frac{-2i+1}{1}=1-2i$