Answer
$\displaystyle \frac{1}{2}+i$
Work Step by Step
Recall, $i=\sqrt{-1}$, so $i^{2}=-1$. Thus, we multiply by$\frac{i}{i}$ to obtain:
$\displaystyle \frac{2-i}{-2i}$
$\displaystyle=\frac{2-i}{-2i}*\frac{i}{i}$
$\displaystyle=\frac{i(2-i)}{-2i*i}$
$\displaystyle=\frac{2i-i^{2}}{-2i^{2}}$
$\displaystyle=\frac{2i-(-1)}{-2*-1}$
$\displaystyle=\frac{1+2i}{2}=\frac{1}{2}+i$