Answer
(3$y^{3}$ + 5$z^{2}$)($9y^{6}$ - 15$y^{3}z^{2}$ + 25$z^{4}$)
Work Step by Step
27$y^{9}$ + 125$z^{6}$ is a sum of cubes, so we write it as a sum of cubes and factor:
$(3y^{3})^{3}$ + $(5z^{2})^{3}$
= (3$y^{3}$ + 5$z^{2}$)($(3y^{3})^{2}$ - 3$y^{3}(5z^{2}$) + $(5z^{2})^{2}$)
= (3$y^{3}$ + 5$z^{2}$)($9y^{6}$ - 15$y^{3}z^{2}$ + 25$z^{4}$)