College Algebra (11th Edition)

Published by Pearson
ISBN 10: 0321671791
ISBN 13: 978-0-32167-179-0

Chapter R - Section R.4 - Factoring Polynomials - R.4 Exercises - Page 39: 76

Answer

$\displaystyle \begin{array}{ c l } \mathrm{Step\ one} & \mathrm{Equivalent\ Expressions\ Property}\\ & \\ \mathrm{Step\ two} & \mathrm{Associative\ property}\\ & \\ \mathrm{Step\ three} & \mathrm{Binomial\ sum\ product\ property}\\ & \\ \mathrm{Step\ four} & \mathrm{Difference\ of\ Squares}\\ & \\ \mathrm{Step\ five} & \mathrm{Commutative\ Property} \end{array}$

Work Step by Step

$\displaystyle \begin{array}{ c l } \mathrm{Step\ one} & x^{2} \ \mathrm{is\ expanded\ to} \ 2x^{2} -x^{2}\\ & \\ \mathrm{Step\ two} & \begin{array}{{>{\displaystyle}l}} \mathrm{Associative\ property\ is\ applied\ here}\\ a+b+c\ =( a+b) +c=a+( b+c) \end{array}\\ & \\ \mathrm{Step\ three} & \begin{array}{{>{\displaystyle}l}} \mathrm{Special\ product\ property\ is\ applied\ here}\\ ( a+b)^{2} =\left( a^{2} +2ab+b^{2}\right)\\ \mathrm{In\ this\ case} \ a\ =\ x^{2} ,\ b\ =\ 1 \end{array}\\ & \\ \mathrm{Step\ four} & \begin{array}{{>{\displaystyle}l}} \mathrm{Difference\ of\ Squares\ is\ applied\ here}\\ a^{2} +b^{2} =( a\ +\ b)( a\ -\ b) \end{array}\\ & \\ \mathrm{Step\ five} & \begin{array}{{>{\displaystyle}l}} \mathrm{Commutative\ Property\ States} :\\ a+b\ =\ b+a \end{array} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.